
Optimally handling commitment issues in

online throughput maximization

Franziska Eberle∗ Nicole Megow∗ Kevin Schewior†

December 23, 2019

Abstract

We consider a fundamental online scheduling problem in which jobs with processing
times and deadlines arrive online over time at their release dates. The task is to determine
a feasible preemptive schedule on a single machine that maximizes the number of jobs
that complete before their deadline. Due to strong impossibility results for competitive
analysis, it is commonly required that jobs contain some slack ε > 0, which means that the
feasible time window for scheduling a job is at least 1+ε times its processing time. In this
paper, we resolve the question on how to handle commitment requirements which enforce
that a scheduler has to guarantee at a certain point in time the completion of admitted
jobs. This is very relevant, e.g., in providing cloud-computing services and disallows last-
minute rejections of critical tasks. We give an algorithm with an optimal competitive ratio
of Θ(1/ε) for the online throughput maximization problem when a scheduler must commit
upon starting a job. Somewhat surprisingly, this is the same optimal performance bound
(up to constants) as for scheduling without commitment. If commitment decisions must be
made before a job’s slack becomes less than a δ-fraction of its size, we prove a competitive
ratio of O(ε/((ε − δ)δ)) for 0 < δ < ε. This result interpolates between commitment
upon starting a job and commitment upon arrival. For the latter commitment model, it
is known that no (randomized) online algorithms does admit any bounded competitive
ratio.

1 Introduction

We consider the following fundamental online scheduling model: jobs from an unknown job
set arrive online over time at their release dates rj . Each job has a processing time pj ≥ 0
and a deadline dj . There is a single machine to process these jobs or a subset of them. A job
is said to complete if it receives pj units of processing time within the interval [rj , dj). We
allow preemption, i.e., the processing of a job can be interrupted at any time. In a feasible
schedule, no two jobs are ever processing at the same time. The number of completed jobs in
a feasible schedule is called throughput. The task is to find a feasible schedule with maximum
throughput.

∗Department for Mathematics and Computer Science, University of Bremen, Germany. Email:
{feberle,nicole.megow}@uni-bremen.de. Partially supported by the German Science Foundation (DFG)
under contract ME 3825/1.
†Departement of Mathematics and Computer Science, University of Cologne, Germany. Email:

kschewior@gmail.com. Partially supported by the DAAD within the PRIME program using funds of BMBF
and the EU Marie Curie Actions.

As jobs arrive online, we cannot hope to find an optimal schedule. To assess the per-
formance of online algorithms, we resort to standard competitive analysis. This means, we
compare the throughput of an online algorithm with the throughput achievable by an optimal
offline algorithm that knows the job set in advance.

It is well-known that “tight” jobs with dj − rj ≈ pj prohibit competitive online decision
making as jobs must start immediately and do not leave a chance for observing online arrivals.
Thus, it is commonly required that jobs contain some slack ε > 0, i.e., every job j satisfies
dj − rj ≥ (1 + ε)pj . The competitive ratio of our online algorithm will be a function of ε;
the greater the slack, the better should the performance of our algorithm be. This slackness
parameter has been considered in previous work, e.g., in [2, 4, 8, 11, 12, 18, 20]. Other results
for scheduling with deadlines use speed scaling, which can be viewed as another way to add
slack to the schedule, e.g., [1, 3, 13,19].

In this paper, we focus on the question how to handle commitment requirements in online
throughput maximization. Modeling commitment addresses the issue that a good-throughput
schedule may abort jobs close to their deadlines in favor of many shorter and more urgent
tasks [10], which may not be acceptable for the job owner. Consider a company that starts
outsourcing mission-critical processes to external clouds and that needs a guarantee that jobs
complete before a certain time point when they cannot be moved to another computing cluster
anymore. In other situations, a commitment to complete jobs might be required even earlier
just before starting the job, e.g., for a faultless copy of a database [8].

Different commitment models have been formalized [2,8,18]. The requirement to commit
at a job’s release date has been ruled out for online throughput maximization by strong
impossibility results [8]. We distinguish (i) commitment upon job admission and (ii) δ-
commitment. In the first model, an algorithm may discard a job any time before its start,
we say its admission. This reflects a situation such as the faultless copy of a database.
In the second model, δ-commitment, an online algorithm must commit to complete a job
when its remaining slack is not less than a δ-fraction of the job size, for 0 < δ < ε. The
latest time for committing to job j is then dj − (1 + δ)pj . This models an early enough
commitment (parameterized by δ) for mission-critical jobs. These models have been studied
and, recently, a first unified approach has been presented in [8]. Gaps in the performance
bounds remained and it was left open if scheduling with commitment is even “harder” than
without commitment.

In this work, we close these gaps for online throughput maximization on a single machine
and answer the “hardness” question to the negative. We give an algorithmic framework
that achieves the provably best competitive ratio (up to constants) for the aforementioned
commitment models. Somewhat surprisingly, we show that the same competitive ratio of
O(1ε) can be achieved for both, scheduling without commitment and with commitment upon
admission. Informally speaking, we show that scheduling with commitment is not harder
than scheduling without.

1.1 Previous results

Preemptive online scheduling with hard deadlines as well as models for admission control
have been studied rigorously, see, e.g., [5, 11, 12] and the references therein. Already in the
90s several impossibility results were shown for jobs without slack [6, 7, 15–17]. The only
positive result independent of slack for online throughput maximization without commitment
seems to be an O(1)-competitive algorithm using randomization [14]. For instances with ε-

2

slack and no commitment requirement, we gave a best possible O(1/ε)-competitive algorithm
with a matching lower bound [8].

Throughput maximization with commitment has attracted researchers more recently [2,
8, 18]. We summarize the state-of-the art for the particular problem of online throughput
maximization with commitment on a single machine. We presented in our recent work [8] a
universal algorithmic framework, called region algorithm, which achieved bounded competi-
tive ratios for several commitment models and even the tight result for scheduling without
commitment. More precisely, the region algorithm is O(1/ε2)-competitive for commitment
upon admission and O(ε/((ε−δ)δ2))-competitive, for 0 < δ < ε, in the δ-commitment model.
This improves on an earlier algorithm by Azar et al. [2] for the δ-commitment model (in the
context of truthful mechanisms for a weighted setting) that is O(1

ε2
)-competitive if the slack ε

is sufficiently large. We also showed a lower bound of Ω(1ε) for scheduling without commit-
ment, which is tight in that model and clearly holds also for the more restrictive commitment
models. A significant gap between lower and upper bounds remained.

In a natural generalization of our problem, jobs have associated individual weights and
we aim for a schedule with maximum weighted throughput. The special case with each job
j satisfying wj = pj (aka machine utilization) is well understood. A simple greedy algorithm
achieves the best possible competitive ratio Θ(1/ε) [9, 11] in both commitment models, even
for commitment upon arrival. In this setting, even scheduling with commitment on parallel
machines is tractable [20]. It is worth mentioning that machine utilization without commit-
ment even allows for constant competitive ratios independent of slack [6, 15, 16, 21]. General
weighted (and even unweighted) throughput maximization is much less tractable. It has been
shown that the general weighted problem is hopeless under commitment requirements and no
bounded competitive ratio is possible in any of the aforementioned models [2, 8, 18].

1.2 Our results and techniques

Our main result is one optimal algorithm for online throughput maximization with commit-
ment. When a scheduler must commit upon starting a job, we show a competitive ratio
of O(1/ε). This is best possible as there is a lower bound of Ω(1/ε) for online throughput
maximization even without commitment [8]. In the δ-commitment model, where commitment
decisions must be made before a job’s slack becomes less than a δ-fraction of its size, we prove
an upper bound of O(ε/((ε − δ)δ)) for 0 < δ < ε. This result interpolates nicely between
both “extreme models”, namely commitment upon starting a job and commitment upon ar-
rival. For small δ, say δ < ε/2, the competitive ratio is Θ(1/ε) which is the best one can
hope for, even without commitment. For large δ, with δ → ε, the commitment requirement
tightens such that commitment decisions must be made essentially upon job arrival, and the
competitive ratio is unbounded (even for randomized algorithms) [8].

The challenge in online scheduling with commitment is that, once the algorithm committed
to the completion of a job, the remaining slack of this job has to be spent very carefully. The
key of our algorithm is a job admission scheme which is implemented by different parameters.
The three high-level objectives are: (i) we never start a job for the first time if its remaining
slack is too small (parameter δ), (ii) during the processing of an admitted job, we admit only
significantly shorter jobs (parameter γ), and (iii), for each admitted shorter job, we avoid
admitting too many other jobs of similar size (parameter β). While the first two goals are
quite natural and have been implemented in some ways before [8,18], the third goal is crucial
for our new and tight result.

3

The intuition is the following: suppose we committed to complete a job with processing
time 1 and have only a slack of O(ε) left before the deadline of this job. Suppose that c
substantially smaller jobs of size 1/c arrive where c is the competitive ratio we aim for. On
the one hand, if we do not accept any of them, we cannot hope to achieve c-competitiveness.
On the other hand, accepting too many of them fills up the slack and, thus, leaves no room
for even smaller jobs. The idea is to keep the flexibility for future small jobs by grouping
jobs of similar size into classes and accepting only one out of O(1/ε) jobs per class, which
is enough for a O(1/ε)-approximation. This is implemented by carefully defining a blocking
period (after which our algorithm is named) that follows a successfully scheduled job and in
which no job of similar or larger processing time is accepted.

The analysis splits into two parts: first, we show that the blocking algorithm completes all
admitted jobs on time, and second, we show that the blocking algorithm admits sufficiently
many jobs to be competitive. As a key contribution on the technical side, we prove a strong
technical lemma concerning the processing volume any feasible solution can achieve compared
to the volume of our online algorithm that was used in a weaker form in earlier work. As a
side result, we can substantially shorten the analysis of an earlier algorithm in [8].

2 An optimal algorithm for commitment

In this section we describe the blocking algorithm which handles scheduling with commitment.
We assume that the slackness constant ε > 0 and, in the δ-commitment model, 0 < δ < ε is
given. If δ is not part of the input or if δ ≤ ε/2, we set δ = ε

2 . Moreover we state the main
result on the blocking algorithm.

2.1 The blocking algorithm

Our algorithm commits to completing any job when it has started processing for the first
time, we say the job has been admitted. When a job is admitted, its remaining slack has to
be spent very carefully. Thus, the algorithm transfers the admission decision to the shortest
admitted and not yet completed job. Then, a job only admits significantly shorter jobs and
prevents the admission of too many jobs of similar size. To this end, we maintain two types
of intervals for each admitted job, a scheduling interval and a blocking period. A job can
only be processed in its scheduling interval and, thus, it has to complete in this interval while
admitting other jobs. Job j only admits jobs that are smaller by a factor of γ = δ

16 < 1. For
an admitted job i, job j creates a blocking period of length at most βpi, where β = 16

δ , which
blocks the admission of similar-length jobs. These intervals are shown in Figure 1.

For scheduling, the algorithm follows the simple Shortest Processing Time (SPT) order
which is independent of the admission scheme. SPT guarantees that a job j has highest
priority in the blocking periods of any job i admitted by j.

For admitting jobs, the algorithm keeps track of available jobs at any time point t. A
job j with rj ≤ t is called available if it has not yet been admitted by the algorithm and its
deadline is not too close, i.e., dj − t ≥ (1 + δ)pj .

Whenever a job j is released or available at a time that is not contained in the scheduling
interval of any other job, the shortest such job j is admitted immediately, creating the schedul-
ing interval S(j) = [rj , rj + (1 + δ)pj) := [aj , ej) and an empty blocking period B(j) = ∅. In
general, however, the blocking period is a finite union of time intervals associated with job j,
and its size is the sum of lengths of the intervals, denoted by |B(j)|. Three events can trigger

4

Scheduling interval Blocking period

t

Figure 1: Scheduling interval, blocking period, and processing intervals.

a decision of the algorithm at time t: the release of a job, the end of a blocking period, and
the end of a scheduling interval. In any of these three cases, the algorithm calls the class
admission routine. This subroutine checks if j, the shortest job whose scheduling interval
contains t, can admit the currently shortest available job i.

To this end, any admitted job j classifies available jobs i with ri ∈ S(j) and pi < γpj de-
pending on their processing time. More precisely, job j maintains a class structure (Cc(j))c∈N0

where Cc(j) contains all jobs i with ri ∈ S(j) and γ
2c+1 pj ≤ pi <

γ
2c pj . Only jobs i ∈ Cc(j)

for c ∈ N0 qualify for admission by j. Upon admission by j, job i obtains two disjoint con-
secutive intervals, the scheduling interval S(i) = [ai, ei) and the blocking period B(i) of size
at most βpi. At the admission of job i, the blocking period B(i) is planned to start at ei, the
end of i’s scheduling interval. During B(i) of job i ∈ Cc(j), j only admits jobs i′ of higher
classes, i.e., i′ ∈ Cc′(j) for c′ > c. Particularly, j only admits job i ∈ Cc(j) if the blocking
period of the last admitted job in Cc(j) has completed.

Hence, when job j decides if it admits the currently shortest available job i at time t, it
makes sure that i indeed belongs to a class Cc(j) and that no higher class c′ ≥ c is blocking t,
i.e., it checks that t /∈ B(i′) for a job i′ ∈ Cc′(j). In this case, we say that i is a child of j
and that j is the parent of i, denoted by π(i) = j. If job i is admitted at time t by job j, the
algorithm sets ai = t and ei = ai + (1 + δ)pi and assigns the scheduling interval S(i) = [ai, ei)
to i.

If ei ≤ ej , the routine sets fi = min{ej , ei + βpi} which implies B(i) = [ei, fi). As
the scheduling and blocking periods of the children k of j are supposed to be disjoint, we
have to update the blocking periods. First consider the job k ∈ Cc′(j) for c′ < c whose
blocking period contains t and let [e′k, f

′
k) be the maximal interval of B(k) containing t. We set

f ′′k = min{ej , f ′k+(1+δ+β)pi} and replace the interval [e′k, f
′
k) by [e′k, t)∪[t+(1+δ+β)pi, f

′′
k).

For all other jobs k ∈ Cc′(j) with B(k) ∩ [t,∞) 6= ∅, we replace the remaining part of their
blocking period [e′k, f

′
k) by [e′k + (1 + δ + β)pi, f

′′
k) where f ′′k := min{ej , f ′k + (1 + δ + β)pi}).

In this update we follow the convention [e, f) = ∅ if f ≤ e. Observe that the length of the
blocking period might decrease due to such updates.

Note that ei > ej is also possible as j does not take the end of its own scheduling interval ej
into account when admitting jobs. Thus, the scheduling interval of i would end outside j’s
scheduling interval and inside j’s blocking period. During B(j), π(j), the parent of j, did
not allocate the interval [ej , ei) for completing jobs admitted by j but for ensuring its own
completion. Hence, the completion of both i and π(j) is not necessarily guaranteed anymore.
To prevent this, we modify all scheduling intervals S(k) (including S(j)) that contain
time t and the corresponding blocking periods B(k). For each admitted job k with t ∈ S(k)
(i.e., including j) and ei > ek we set ek = ei. We also update their blocking periods (in fact,

5

Algorithm 1: Blocking algorithm

Scheduling routine: At any time t, run an admitted and not yet completed job with
shortest processing time.

Event: Upon release of a new job at time t:
Call class admission routine.

Event: Upon ending of a blocking or scheduling interval at time t:
Call class admission routine.

Class admission routine:
i ← a shortest available job at t, i.e., i ∈ arg min{pj | rj ≤ t and dj − t ≥ (1 + δ)pj}
K ← the set of jobs whose scheduling intervals contain t
j ← arg min{pk | k ∈ K}
If i ∈ Cc(j) and no c′ ≥ c and i′ ∈ Cc′(j) with t ∈ B(i′) exists, then

1. admit job i, ai = t and ei = ai + (1 + δ)pi
if ei ≤ ej , then

fi = min{ej , ei + βpi}
set S(i) = [ai, ei) and B(i) = [ei, fi)

else
set ej = ei and fi = ei
modify S(k) and B(k) for k ∈ K

2. update B(k) with B(k) ∩ [t,∞) 6= ∅ and k ∈ Cc′(j) for c′ < c

single intervals) to reflect their new starting points. If the parent π(k) of k does not exist,
B(k) remains empty; otherwise we set B(k) := [ek, fk) where fk = min{eπ(k), ek +βpk}. Note
that, after this update, the blocking intervals of any but the largest such job will be empty.
Moreover, the just admitted job i does not get a blocking period in this special case.

During the analysis of the blocking algorithm, we show that any admitted job j still
completes before aj + (1 + δ)pj and that ej ≤ aj + (1 + 2δ)pj holds in retrospective for
all admitted jobs j. Thus, any job j that admits another job i officially assigns this job
a scheduling interval of length (1 + δ)pi but, for ensuring j’s completion, expects loosing
(1 + 2δ)pi time units of its scheduling interval S(j). We summarize the blocking algorithm in
Algorithm 1.

2.2 Results on the blocking algorithm

As noted in [8], it is sufficient to concentrate on instances with small slack. The same is
true for our blocking algorithm as for ε > 1 we run the algorithm with ε = 1 and obtain
constant competitive ratios. Thus, for the analysis we assume 0 < ε ≤ 1. Moreover, in
the δ-commitment model, committing to the completion of a job j at an earlier point in time
clearly satisfies committing at a remaining slack of δpj . Therefore, we assume δ ∈ [ε2 , ε).

Remark 1. The blocking algorithm guarantees to complete every job that it started. When the
blocking algorithm commits to the completion of job j, this happens no later than dj−(1+δ)pj.
Hence, the algorithm is stricter than required by any of the two commitment models.

For scheduling with commitment upon admission, we give an (up to constants) optimal
online algorithm with competitive ratio Θ(1/ε). For scheduling with δ-commitment, our
result interpolates between the models commitment upon starting a job and commitment
upon arrival. If δ ≤ ε/2, the competitive ratio collapses to Θ(1/ε) which is best possible [8].

6

For δ → ε, the commitment requirements essentially implies commitment upon job arrival
which has unbounded competitive ratio [8].

Theorem 1. Let 0 < ε ≤ 1. The blocking algorithm is O(ε
(ε−δ′)δ′)-competitive for schedul-

ing with commitment where δ′ = ε/2 in the commitment upon admission model and δ′ =
max{δ, ε/2} in the δ-commitment model.

The proof of Theorem 1 consists of two parts. In the first one, we show that the blocking
algorithm completes all admitted jobs on time. The second part is to show that the blocking
algorithm admits sufficiently many jobs to be competitive.

3 Completing all admitted jobs on time

We show that the blocking algorithm finishes every admitted job on time in Lemma 2. To this
end, we need the following technical lemma about the length of the final scheduling interval
of an admitted job j.

Lemma 1. Let 0 < δ < ε be fixed. If γ > 0 satisfies

(1 + 2δ)γ ≤ δ, (1)

then the length of the scheduling interval S(j) of an admitted job j is upper bounded by
(1 + 2δ)pj. Moreover, the scheduling interval S(j) contains the scheduling intervals of all its
descendants.

Proof. By definition of the blocking algorithm, the end point ej of the scheduling interval of
job j is only modified when j or one of j’s descendants admits another job. Let us consider
such a case: If job j admits a job i whose scheduling interval does not fit the scheduling
interval of j, we set ej = ei = ai + (1 + δ)pi to accommodate the scheduling interval S(i)
within S(j). The same modification is applied to any ancestor k of j with ek < ei. This
implies that, after such a modification of the scheduling interval, neither j nor any affected
ancestors k of j are the smallest jobs in their scheduling intervals anymore. In particular,
no job whose scheduling interval was modified in such a case at time t is able to admit jobs
after t. Hence, any job j can only admit other jobs within the interval [aj , aj + (1 + δ)pj). In
particular, ai ≤ aj + (1 + δ)pj for any job i with π(i) = j.

Thus, by induction, it is sufficient to show that ai + (1 + 2δ)pi ≤ aj + (1 + 2δ)pj for
admitted jobs i and j with π(i) = j in order to prove the lemma. Note that π(i) = j implies
pi < γpj . Thus,

ai + (1 + 2δ)pi ≤ (aj + (1 + δ)pj) + (1 + 2δ)γpj ≤ aj + (1 + 2δ)pj ,

where the last inequality follows from Equation (1).

Scheduling in Shortest Processing Time order guarantees the following.

Observation 1. If j is the shortest job such that t ∈ S(j), then j has the highest scheduling
priority among all admitted and not yet completed jobs.

We proceed with proving that the blocking algorithm completes all admitted jobs before
their deadlines.

7

Theorem 2. Let 0 < δ < ε be fixed. If 0 < γ < 1 and β ≥ 1 satisfy

β/2

β/2 + (1 + 2δ)

(
1 + δ − 2(1 + 2δ)γ

)
≥ 1, (2)

then the blocking algorithm will complete a job j that was admitted at aj ≤ dj − (1 + δ)pj on
time.

Our choice of parameters guarantees that Inequality (2) is satisfied.

Proof. Let j be a job admitted by the blocking algorithm with aj ≤ dj − (1 + δ)pj . Hence,
showing that a job j completes before time tj := aj + (1 + δ)pj proves the theorem. By
Observation 1, we know that each job j has highest priority in its own scheduling interval
if the time point does not belong to the scheduling interval of a descendant of j. Thus, it
suffices to show that at most δpj units of time in [aj , tj) belong to scheduling intervals S(i)
of descendants of j. By Lemma 1, the scheduling intervals of any descendant k of a child i
of j is contained in S(i). Hence, it is sufficient to only consider K, the set of children of j.
In order to bound the contribution of each child i ∈ K, we partition K into two sets. The
first set K1 contains all children of j that where admitted as the first jobs in their class Cc(j).
The set K2 contains the remaining jobs.

We start with K2. Consider a job i ∈ Cc(j) admitted by j. By Lemma 1, we know
that |S(i)| = (1 + µδ)pi where 1 ≤ µ ≤ 2. Let k ∈ Cc(j) be the previous job admitted by j
in class c. Then, B(k) ⊆ [ek, ei). Since scheduling and blocking periods of children of j are
always disjoint, j had highest scheduling priority in B(k). Hence, during B(k) ∪ S(i) job j

was processed for at least |B(k)| units of time. In other words, j used a fraction of |B(k)|
|B(k)∪S(i)|

of B(k) ∪ S(i). We can rewrite this ratio by

|B(k)|
|B(k) ∪ S(i)|

=
βpk

βpk + (1 + µδ)pi
=

νβ

νβ + (1 + µδ)
,

where ν := pk
pi
∈ (12 , 2]. By differentiating with respect to ν and µ, we observe that the last

term is increasing in ν and decreasing in µ. Thus, we can lower bound this expression by

|B(k)|
|B(k) ∪ S(i)|

≥
β
2

β
2 + (1 + 2δ)

. (3)

Therefore, in
⋃
i∈K B(i) ∪

⋃
i∈K2

S(i), j uses at least a β/2
β/2+(1+2δ) -fraction for processing.

We proceed with considering the set K1. The total processing volume of first jobs is
bounded by

∞∑
c=0

γ

2c
pj = 2γpj .

By Lemma 1, we know that |S(i)| ≤ (1 + 2δ)pi. Combining these two observations, we can
upper bound the contribution of K1 by∣∣∣ ⋃

i∈K1

S(i)
∣∣∣ ≤ 2(1 + 2δ)γpj . (4)

8

Combining Equations (3) and (4), we conclude that j is scheduled for at least∣∣∣[aj , tj) \ ⋃
i∈K

S(i)
∣∣∣ ≥ β/2

β/2 + (1 + 2δ)

(
(1 + δ)− 2(1 + 2δ)γ

)
pj ≥ pj

units of time, where the last inequality follows from Equation (2). Thus, j completes before
tj = aj + (1 + δ)pj ≤ dj .

4 Admitting sufficiently many jobs

After proving that each admitted job completes on time, we prove in this section that the
blocking algorithm admits enough jobs to be O(ε

(ε−δ)δ)-competitive.

4.1 Key lemma on the size of non-admitted jobs

For the proof of the main result in this section, we rely on the following strong, structural
lemma. It relates the volume that any feasible schedule σ processes in some interval to the
size of jobs admitted by an online algorithm Alg satisfying the following two properties:
(i) Alg never admits a job j later than dj − (1 + δ)pj for 0 < δ < ε and (ii) at time t, the
algorithm admits any job j with pj ≤ ut for ut ∈ (0,∞]. Note that our blocking algorithm
as well as the region algorithm in [8] satisfy (i) and (ii). Let Xσ be the set of jobs that σ
completed and that Alg did not admit. Let Cx be the completion time of job x ∈ Xσ in σ.

Lemma 2. Let 0 ≤ t1 ≤ t2 and fix x ∈ Xσ as well as Y ⊂ Xσ \ {x}. If

(R) rx ≥ t1 as well as ry ≥ t1 for all y ∈ Y ,

(C) Cx ≥ Cy for all y ∈ Y , and

(P)
∑

y∈Y py ≥
ε
ε−δ (t2 − t1)

hold, then px ≥ ut2 where ut2 is the upper bound imposed by Alg at time t2.

Proof. We show the lemma by contradiction. More precisely, we show that, if px < ut, the
schedule σ cannot complete x on time and, hence, is not feasible.

Remember that x ∈ Xσ implies that the blocking algorithm did not admit job x at any
point t. At time t2, there are two possible reasons why x was not admitted: px ≥ ut or
dx − t2 < (1 + δ)px. In case of the former, the statement of the lemma holds. Thus, let us
assume px < ut and, therefore, dx − t2 < (1 + δ)px holds. As job x arrived with a slack of at
least εpx at its release date rx and rx ≥ t1 by assumption, we have

t2 − t1 ≥ t2 − dx + dx − rx > −(1 + δ)px + (1 + ε)px = (ε− δ)px.

As all jobs in Y complete earlier than x by Assumption (C) and are only released after t1
by (R), the volume processed by σ in [t1, Cx) is greater than ε

ε−δ (t2 − t1) + px by (P).
Moreover, σ can process at most t2 − t1 in [t1, t2). This implies that σ has to process job
parts with a processing volume of at least

δ

ε− δ
(t2 − t1) + px >

δ

ε− δ
(ε− δ)px + px = (1 + δ)px

after time t2. Thus, Cx > t2 + (1 + δ)px > dx which contradicts the feasibility of σ.

9

Observe that the online algorithm Alg admits any job that satisfies pj ≤ ut. In particular,
if ut =∞ for some time point t, Alg admits any job. This implies the following corollary.

Corollary 1. If ut2 =∞, there does not exist a job x ∈ Xσ such that there exists a time 0 ≤
t1 ≤ t2 and a set Y ⊂ Xσ \ {x} satisfying (R), (C), and (P) in Lemma 2.

4.2 The blocking algorithm is O(ε
(ε−δ)δ)-competitive

Theorem 3. An optimal (offline) algorithm can complete at most a factor α + 4 more jobs
on time than admitted by the blocking algorithm where α := ε

ε−δ
(
2β + 1+2δ

γ

)
.

For proving the theorem, we fix an instance and an optimal offline algorithm Opt. Let X
be the jobs that Opt scheduled and the blocking algorithm did not admit. We assume without
loss of generality that Opt completes all jobs in X on time. Further, let J be the jobs that
the blocking algorithm scheduled. Then, X ∪ J clearly is a superset of the jobs that Opt
scheduled. Hence, to show the theorem it is sufficient to prove that |X| ≤ (α+ 3)|J |.

More precisely, we develop a charging scheme of jobs in X to the intervals that the
algorithm created such that no interval gets charged too many jobs. We then bound the
number of intervals in terms of |J |. The idea behind our charging scheme is that Opt is not
able to schedule arbitrary many jobs during a scheduling interval or a blocking period created
by the blocking algorithm.

Intuitively, jobs that were released during a scheduling interval or a blocking period and
not admitted by the algorithm have to satisfy certain lower bound on their processing times.
Thus, the charging scheme relies on the release date rx and the size px of a job x ∈ X as well
as on the precise structure of the intervals created by the blocking algorithm. The number of
jobs we charge to one interval will depend on the relative length of the interval.

We retrospectively consider I, the set of all the intervals the blocking algorithm created,
i.e., the scheduling intervals S(j) and the (possibly many) intervals that form the blocking
periods B(j). For simplicity we say i ∈ I for an interval Ii = [µi, νi). We say job j owns or is
the owner of interval Ii if either Ii is the scheduling interval of j or Ii is one of the intervals
that form the blocking period of j. We also define j(i) to be the job that owns a particular
interval Ii. If Ii is the scheduling interval of j(i), we say that Ii is of type S. Otherwise, the
interval belongs to the blocking period B(j) and is called of type B. We collect the indices
of the intervals that form the blocking period B(j) of job j in the set B(j). In Lemma 4,
we show that a scheduling interval S(j) gets at most ε

ε−δ
1+2δ
γ + 1 many jobs and a blocking

period B(j) is assigned at most 2 ε
ε−δβ + |B(j)| jobs. Lemma 3 shows that the total number

of intervals that the blocking algorithm created is bounded from above by 3|J |. Combining
these two lemmas then proves that indeed |X| ≤ (α+ 3)|J |.

Lemma 3. The blocking algorithm creates at most 3|J | intervals.

Proof. The blocking algorithm does not split scheduling intervals. Hence, the number of
scheduling intervals is exactly |J |. The admission of a new job splits at most one interval of
a blocking period into two intervals. Thus, the admission of |J | jobs creates at most 2|J | − 1
intervals of type B. In total, the algorithm creates at most 3|J | − 1 intervals.

The charging scheme developed in Lemma 4 is based on a careful modification of the
following partition (Fi)i∈I . Fix an interval Ii, its owner j, and the parent π of j. We can
now define the set Fi ⊂ X that contains all jobs x ∈ X that are released during Ii and satisfy

10

certain bounds on their processing times. If Ii is of type S, the owner j immediately admits
any job x with rx ∈ Ii that is smaller than γpj unless the time also belongs to the scheduling
interval or the blocking period of a descendant of j. Hence, we use γpj as a natural lower
bound for jobs in Fi. Similarly, γpπ is a natural upper bound as such jobs can also be assigned
to Fi′ where Ii′ = S(π). If Ii is of type B, a similar argumentation shows that px ≥ pj/2 and
px < γpπ are natural bounds on the processing time. Hence,

Fi :=

{
{x ∈ X : rx ∈ Ii and γpj ≤ px < γpπ} if i is of type S,

{x ∈ X : rx ∈ Ii and pj/2 ≤ px < γpπ} if i is of type B.

As argued above, jobs x ∈ X with rx ∈ S(j) and px < γpj are released within a blocking
or a scheduling interval of one of the descendants of j as otherwise the blocking algorithm
admits such jobs. Thus, such jobs x belong to the set Fi′ of the corresponding interval Ii′ .
Moreover, jobs with release dates not within any blocking or scheduling interval of some job j
are admitted by the blocking algorithm. Hence, the following observation holds.

Observation 2. X =
⋃
i∈I Fi.

We now formalize how many jobs in X we will assign to a specific interval Ii = [µi, νi)
with owner j. Depending on the type of Ii we define

λi =

{
γpj if i is of type S
pj
2 if i is of type B.

Then, the target number of interval Ii is defined as ϕi :=
⌊

ε
ε−δ

νi−µi
λi

⌋
+ 1. For a scheduling

interval S(j) = Ii, this implies that the target number is

ϕi =

⌊
ε

ε− δ
νi − µi
γpj

⌋
+ 1 ≤ ε

ε− δ
1 + 2δ

γ
+ 1

by Lemma 1. For a blocking period B(j) =
⋃
i∈B(j) Iik the target number is

∑
i∈B(j)

ϕi =
∑
i∈B(j)

⌊ ε

ε− δ
νi − µi
pj/2

⌋
+ 1

 ≤ |B(j)|+
∑
i∈B(j)

ε

ε− δ
νi − µi
pj/2

≤ |B(j)|+ 2
ε

ε− δ
β

because βpj ≥ |B(j)| =
∑

i∈B(j)(νi − µi).
If each of the sets Fi satisfies |Fi| ≤ ϕi, Observation 2 and Lemma 3 guarantee |X| ≤(
ε
ε−δ (2β+ 1+2δ

γ)+3
)
|J | and, hence, prove Theorem 1. In general, this does not have to be true

as Opt may preempt jobs and process the parts during several intervals Ii. In the remainder
of this section, we show that there exists another partition

(
Gi
)
i∈I of the jobs in X such

that |Gi| ≤ ϕi holds.

Lemma 4. |X| ≤ α|J |+ |I|

Proof. As observed before it suffices to show that there is a partition G =
(
Gi
)
i∈I such that

|Gi| ≤ ϕi and
⋃
i∈I Gi = X in order to prove the lemma. The high level idea of this proof is

the following: Consider an Interval Ii = [µi, νi). If Fi does not contain too many jobs, i.e.,
|Fi| ≤ ϕi, we would like to set Gi = Fi. Otherwise, we find another interval Ii′ with |Fi′ | < ϕi′

11

that has a later end point than Ii, i.e., νi ≤ νi′ , such that we can assign the excess jobs in Fi
to Ii′ .

In order to repeatedly apply Lemma 2, we only assign such excess jobs x ∈ Fi to Gi′ if
their processing time is at least the lower bound on the size of jobs in Fi′ , i.e., px ≥ λi′ . Then,
by our choice of parameters, a set Gi′ with ϕi′ many jobs of size at least λi′ “covers” the
interval Ii′ = [µi′ , νi′) as often as required by (iii) in Lemma 2, i.e.,∑

x∈Gi′

px ≥ ϕi′ · λi′ =
ε

ε− δ
(νi′ − µi′). (5)

The proof consists of two parts: the first one is to inductively construct the partition G =(
Gi
)
i∈I of X with |Gi| ≤ ϕi. The second one is the proof that a job x ∈ Gi satisfies px ≥ λi.

During the construction of G we define temporary sets Ai ⊂ X for intervals i ∈ I. The set Gi
will be chosen as a subset of Fi ∪Ai of appropriate size. In order to apply Lemma 2 to each
job in Ai individually, alongside Ai, we will construct a set Yx,i and a time tx,i ≤ rx for each
job x ∈ X that is added to Ai. Let C∗x be the completion time of some job x ∈ X in the
optimal schedule Opt. In the second part of the proof we will then show that x, tx,i, and Yx,i
satisfy

(R) ry ≥ tx,i for all y ∈ Yx,i,

(C) C∗x ≥ C∗y for all y ∈ Yx,i, and

(P)
∑

y∈Y (x,i) py ≥
ε
ε−δ (µi − tx,i).

Then, x, Y = Yx,i, t1 = tx,i, and t2 = µi satisfy the conditions of Lemma 2 and we can deduce
that the processing time of x is at least as large as the lower bound of interval i, i.e., px ≥ λi.

Constructing G =
(
Gi
)
i∈IM

. We follow the order ≤ν that is defined by νi, i.e., the end
points of the intervals. For two intervals Ii′ and Ii with νi′ = νi, there has to be a difference
in the size of their owners j(i′) and j(i). We use this to break ties, i.e., if pj(i) < pj(i′),
then Ii <ν Ii′ . Then, ≤ν is a total order on the set of intervals I. We index the intervals with
respect to the total order ≤ν and abbreviate Ii ≤ν Ii′ by i ≤ i′. For simplicity, we include
a machine job M with infinite processing time, i.e., IM = (−∞,∞). By Observation 2, we
know that FM = ∅. Additionally, we set λM = ϕM =∞. Clearly, M is the maximal element
in the just defined order.

We start by setting Ai = ∅ for all intervals i ∈ IM . For simplicity, we define Yx,i = ∅ for
each job x ∈ X and each interval i. The preliminary value of the time tx,i is the minimum of
the start point µi of the interval i and the release date rx of x, i.e., tx,i := min{µi, rx}. The
order of the construction follows the total order defined above. We refer by step i to the step
in the construction where Gi was defined.

Let Ii be the next interval to consider during the construction. Let i′ ≥ i be the first
interval that contains the end point of Ii, i.e., νi ∈ Ii′ . This interval Ii′ does exist as the last
interval in our order is the machine interval S(M) = (−∞,∞). Depending on the cardinality
of Fi ∪Ai, we have to distinguish two cases. If |Fi ∪Ai| ≤ ϕi, we set Gi = Fi ∪Ai.

If |Fi ∪Ai| > ϕi, we order the jobs in Fi ∪Ai in increasing completion times in Opt. The
first ϕi jobs are assigned to Gi while the remaining |Fi ∪ Ai| − ϕi jobs are added to Ai′ . In
this case, we might have to redefine the times tx,i′ and the sets Yx,i′ for the jobs x that were

12

newly added to Ai′ . Fix such a job x. If there is no job z in the just defined set Gi that has
a smaller release date than tx,i, we set tx,i′ = tx,i and Yx,i′ = Yx,i ∪Gi. Otherwise let z ∈ Gi
be a job with rz ≤ tx,i that has the smallest time tz,i. We set tx,i′ = tz,i and Yx,i′ = Yz,i ∪Gi.

Bounding the size of the jobs in Gi. We consider the intervals again in the order defined
by the endpoints and show by induction on the interval indices that any job x in Gi indeed
satisfies px ≥ λi. Clearly, if x ∈ Fi ∩Gi, the size bound is fulfilled by definition of the set Fi.
Hence, in order to show the lower bound on the processing time of x ∈ Gi, it is sufficient to
consider jobs in Gi \Fi ⊂ Ai. To this end, we show that (R), (C), and (P) are satisfied. Then,
Lemma 2 guarantees that px ≥ λi.

Let i be the smallest index such that Ai 6= ∅ and fix x ∈ Ai. Let i′ < i be such that x ∈ Fi′ .
Then, νi′ ∈ Ii by construction and we assigned x in step i′ to Ai. Due the choice of i, we
know that Gi′ ⊂ Fi′ . This implies that (R) is trivially satisfied for the time tx,i′ = min{µi′ , rx}
and that py ≥ λi′ for each y ∈ Gi′ . For (P), consider that |Gi′ | = ϕi′ . It follows∑

y∈Gi′

py ≥ ϕi′ · λi′ ≥
ε

ε− δ
(νi′ − µi′) =

ε

ε− δ
(νi′ − tx,i′) ≥

ε

ε− δ
(µi − tx,i)

as νi′ ∈ Ii implies νi′ ≥ µi. By construction, (C) is also true because x completes later than
any of the first ϕi′ jobs in Fi′ that were assigned to Gi′ . As discussed before, this implies that
indeed px ≥ λi.

Assume that the conditions (R), (C), and (P) are satisfied for all x ∈ Ai for all 1 ≤ i < h.
This implies that, for i < h, the set Gi only contains jobs with px ≥ λi. Let i ≥ h be the first
index with Ai 6= ∅ and fix x ∈ Ai. We want to show that px ≥ λi. Let i′ < i be maximal such
that x ∈ Ai′ ∪ Fi′ . By induction, py ≥ λi′ holds for all y ∈ Gi′ . Because x did not fit in Gi′

anymore, |Gi′ | = ϕi′ .
As before, we consider two different cases depending on the jobs in Gi′ . If there is no z ∈

Gi′ with rz < tx,i′ = tx,i, (R) and (C) are trivially satisfied by construction and by induction.
For (P), consider ∑

y∈Yx,i

py =
∑

y∈Yx,i′

py +
∑
yinGi′

py

≥ ε

ε− δ
(µi′ − tx,i′) + λi′ · ϕi′

≥ ε

ε− δ
(µi′ − tx,i) +

ε

ε− δ
(νi′ − µi′)

≥ ε

ε− δ
(µi − tx,i).

Here, the first inequality follows from induction on x, Yx,i′ , and tx,i′ , the second by definition,
and the third inequality follows from νi′ ≥ µi.

If there is a job z ∈ Gi′ with rz < tx,i′ ≤ µi′ , then z ∈ Ai′ . During the construction
of Gi, we chose z with minimal tz,i′ . We have that ry ≥ ty,i′ ≥ tz,i′ for all y ∈ Gi′ and rx ≥
tx,i′ > rz ≥ tz,i′ . Moreover, by induction, ry ≥ ty,i′ holds for all y ∈ Yz,i′ . Thus, tx,i
and Yx,i satisfy (R). For (C), consider that C∗x ≥ C∗y for all y ∈ Gi′ by construction and, thus,

13

C∗x ≥ C∗z ≥ C∗y also holds for all y ∈ Yz,i′ . For (P), observe that∑
y∈Yx,i

py =
∑

y∈Yz,i′

py +
∑
y∈Gi′

py

≥ ε

ε− δ
(µi′ − tz,i′) + λi′ · ϕi′

≥ ε

ε− δ
(µi′ − tx,i) +

ε

ε− δ
(νi′ − µi′)

≥ ε

ε− δ
(µi − tx,i).

Here, the first inequality follows by induction on z, Yz,i′ , and tz,i′ , the second by definition
of λi′ and ϕi′ , and the last inequality is due to νi′ ∈ Ii which in turn implies νi′ ≥ µi.

Showing |X| ≤ α|J | + |I|. By construction, we know that
⋃
i∈IM Gi = X. Thus, the

claim follows if GM = ∅, i.e., if the machine interval M did not receive any job x ∈ X. The
machine interval M is the last interval we consider during the construction. As the algorithm
admits any job that is not released within the scheduling interval or the blocking period of
another job, we know that FM = ∅ by definition. Hence, GM 6= ∅ implies that AM 6= ∅.
As (R), (C), and (P) also hold for any job x ∈ AM , Corollary 1 implies that such an x cannot
exist. Hence, the number of jobs in X is indeed bounded by α|J |+ |I|.

Proving Theorem 3

Proof of Theorem 3. As discussed before, the union X ∪ J of X, the jobs only scheduled by
Opt, and J , the jobs admitted by the blocking algorithm, is a superset of the jobs that Opt
completed. Lemma 4 shows that |X| ≤ ε

ε−δ
(
2β + 1+2δ

γ

)
|J | + |I|. Combining this with the

bound on I given in Lemma 3, we conclude

Opt ≤

(
ε

ε− δ

(
2β +

1 + 2δ

γ

)
+ 3

)
|J |.

Completing the proof of Theorem 1

Proof of Theorem 1. In Theorem 2 we show that the blocking algorithm completes all admit-
ted jobs J on time. First, this implies that the blocking algorithm is feasible for the model
commitment upon admission. Second, as no job j ∈ J is admitted later than dj − (1 + δ)pj
this shows that the blocking algorithm also solves scheduling with δ-commitment. Third, in
combination with Theorem 3, where we bound an optimal solution Opt in terms of |J |, this
shows that the blocking algorithm achieves a competitive ratio of

α =

(
ε

ε− δ

(
2β +

1 + 2δ

γ

)
+ 3

)
.

By our choice of parameters β = 16
δ and γ = δ

16 we have that α ∈ O
(

ε
(ε−δ)δ

)
which completes

the proof of Theorem 1.

14

5 Easier analysis of the region algorithm

In [8], we give an algorithmic framework that handles various commitment models in online
throughput maximization. First, it is best possible when maximizing throughput without
any commitment requirements. Second, it gives the first non-trivial competitive ratio when
scheduling with commitment upon starting a job or with δ-commitment.

The region algorithm uses two parameters, α ≥ 1 and β � 1 to implement the different
commitment models. When admitting a job j, the algorithm assigns it a region R(j) of
length αpj during which only jobs of size at most βpj are admitted. The region algorithm
never admits a job later than dj − (1 + δ)pj . As regions are interrupted for the admission
of smaller jobs and resumed after the end of their regions, in the end, the region algorithm
creates disjoints intervals that belong to the region R(j). With Lemma 2, which is a strong
generalization of the Volume Lemma (Lemma 3) in [8], we can now simplify the proof of
Theorem 5.

Theorem 4 (Theorem 5 in [8]). The number of jobs that an optimal (offline) algorithm can
complete on time is by at most a multiplicative factor λ + 2 larger than the number of jobs
admitted by the region algorithm, where λ := ε

ε−δ
α
β , for 0 < δ < ε ≤ 1.

As before, fix an optimal (offline) solution Opt and let X be the set of jobs only processed
by Opt but not by the region algorithm. Without loss of generality, we assume that Opt
completes every job that it starts. Let J be the set of jobs admitted by the region algorithm.
Then, X∪J is a superset of the jobs completed by Opt and showing |X| ≤ |J |+2 is sufficient
to prove the theorem. We develop a new charging scheme of the jobs in X directly to the
intervals created by the region algorithm in Lemma 6 and bound the number of intervals in
Lemma 5.

Let I be the set of disjoint intervals created by the region algorithm. Then, the number of
intervals created by the region algorithm is bounded in terms of the number of jobs admitted
by the region algorithm.

Lemma 5. The region algorithm creates at most 2|J | intervals.

Proof. The region algorithm splits at most one interval of a region into two intervals when
admitting a new job. Thus, the admission of |J | jobs creates at most 2|J | − 1 intervals.

In order to give the simpler proof for Theorem 4, we start with a partition of the jobs
in X that is based on their release dates. If this partition does not satisfy the size bounds,
we carefully modify the partition and repeatedly apply Lemma 2.

Fix an interval Ii = [µi, νi) and its owner j. Then, analogously to Section 4, we define Fi ⊂
X to contain all jobs x that were released during Ii. The region algorithm admits any job
released in Ii that is smaller than βpj(i). Hence, defining λi = βpj(i) provides a natural lower
bound on the jobs in Fi. In combination with the fact that the region algorithm never admits
jobs too close to their deadlines, i.e., only before dj−(1+δ)pj , we can directly apply Lemma 2
given that the conditions are met. Note that the intervals created by the region algorithm
are always disjoint.

For Ii = [µi, νi), we define ϕi =
⌊
νi−µi
λi

⌋
+ 1 as the target number, i.e., the number of jobs

we assign to interval Ii. Then, the number of jobs assigned to a region R(j) is bounded by
α
β + ρj where ρj is the number of intervals belonging to R(j). In combination with Lemma 5

15

that bounds the number of intervals, this gives us an upper bound on |X|, the number of jobs
only completed by Opt.

Lemma 6. |X| ≤ α
β |J |+ |I|.

Proof. The proof follows the line of proof for Lemma 4. We construct a partition G = (Gi)i∈I
that satisfies |Gi| ≤ ϕi for all i ∈ I. As discussed above, this is sufficient to show the
statement.

The structure of intervals created by the region algorithm is much simpler than the struc-
ture created by the blocking algorithm as all intervals are disjoint. This allows us to individ-
ually consider each maximal subset I ′ of I such that the intervals in I ′ form one contiguous
interval in the analysis of the region algorithm. From now on, we assume that the intervals
in I indeed form one interval.

The starting point of the construction of G is the partition (Fi)i∈I . If the set Fi contains
no more than ϕi elements, we would like to set Gi = Fi. If the set Fi contains too many
elements, we move the excess jobs to some later interval Ii′ , i.e., to an interval with νi′ > νi.
More precisely, we add such jobs to the set Ai′ , that satisfies px ≥ λi′ for all jobs x ∈ Ai′ , and
consider the set Ai′ when we define Gi′ .

In order to show the size bound on jobs in some set Ai, we define a time tx,i and a set Yx,i
for each job x that is added to the set Ai. We guarantee that tx,i and Yx,i satisfy

(R) ry ≥ tx,i for all y ∈ Yx,i,

(C) C∗x ≥ C∗y for all y ∈ Yx,i, and

(P)
∑

y∈Y (x,i) py ≥
ε
ε−δ (µi − tx,i).

This allows us to apply Lemma 2 and deduce that indeed px ≥ λi holds.
The proof consists of two separate steps; the first one is the construction of G and the

second one is showing px ≥ λi for x ∈ Ai. During these two steps we follow the order on
the intervals defined by their end points. Note that, as the intervals created by the region
algorithm are disjoint, this already defines a total order. From now on, we index the intervals
in this order. The simpler structure of intervals created by the region algorithm implies
that νi = µi+1 for 1 ≤ i < |I|. Moreover, we add a machine interval IM = [ν|I|,∞), which is
the last element in the just defined order. As the region algorithm admits all jobs released
not within the region of any already admitted job, we know that FM = ∅. For simplicity, we
additionally set λM =∞.

Constructing G = (Gi)i∈I . We start by defining Ai = ∅ for all intervals. Moreover, we
temporarily set Yx,i = ∅ and tx,i = min{µi, rx} for each interval i and each job x.

Let i ∈ I be the next interval to be considered during the construction. If |Fi ∪Ai| ≤ ϕi,
we set Gi = Fi∪Ai. Otherwise, we sort the jobs in x in order of their completion times C∗x in
Opt. The set Gi consists of the first ϕi jobs and the remaining |Fi ∪Ai| − ϕi jobs are added
to the set Ai+1. We may have to redefine Yx,i+1 and tx,i+1 in this case. Fix a newly added
job x. If no job z ∈ Gi is released before tx,i we define tx,i+1 = tx,i and Yx,i+1 = Yx,i ∪ Gi.
Otherwise let z ∈ Gi with rz ≤ tx,i be the job with the smallest time tz,i and set tx,i+1 = tz,i
and Yx,i+1 = Yz,i ∪Gi.

16

Bounding the size of jobs in Gi. More precisely, we inductively show that each job in Ai
satisfies px ≥ λi. During the induction, we follow again the order on I defined by the endpoints
of the intervals. Let i be the smallest index such that Ai 6= ∅ and fix x ∈ Ai. As νi = µi−1,
we have that Gi−1 ⊂ Fi−1 and x ∈ Fi−1 by choice of i. Therefore, tx,i−1 = µi−1 ≤ ry holds for
all y ∈ Gi−1 ⊂ Fi−1 which implies (R). Moreover, py ≥ λi−1 for y ∈ Gi−1 and |Gi−1| = ϕi−1.
Hence, ∑

y∈Gi−1

py ≥ ϕi−1 · λi−1 ≥
ε

ε− δ
(νi−1 − µi−1) =

ε

ε− δ
(µi − tx,i−1),

which implies (P). Condition (C) holds by construction. Thus, Lemma 2 implies that px ≥ λi.
Let conditions (R), (P), and (C) be satisfied for all x ∈ Ai for all 1 ≤ i ≤ h. Note that this

implies that the set Gi only consists of jobs that satisfy px ≥ λi for all 1 ≤ i ≤ h. Let i > h
be the next index with Ai 6= ∅ and fix x ∈ Ai. Then, x ∈ Fi−1 ∪ Ai−1. By construction we
have that |Gi−1| = ϕi−1.

We distinguish two different cases depending on the jobs in Gi−1. If there is no z ∈ Gi−1
with rz < tx,i−1 = tx,i, the conditions (R) and (C) are trivially satisfied. For (P) we have∑

y∈Yx,i

py =
∑

y∈Yx,i−1

py +
∑

y∈Gi−1

py

≥ ε

ε− δ
(µi−1 − tx,i−1) + λi−1 · ϕi−1

≥ ε

ε− δ
(µi−1 − tx,i) +

ε

ε− δ
(νi−1 − µi−1)

=
ε

ε− δ
(µi − tx,i).

If there is a job z ∈ Gi−1 with rz < tx,i−1 ≤ µi−1, then this job belongs to Ai−1. During the
construction of Gi, we chose z to minimize tz,i−1. Hence, ry ≥ ty,i−1 ≥ tz,i−1 = tx,i holds for
all y ∈ Gi−1. As rx ≥ tx,i−1 > rz ≥ tz,i−1 holds, this shows (R). By construction C∗x ≥ C∗y
holds for all y ∈ Gi−1 and, thus, C∗x ≥ C∗z ≥ C∗y also holds for all y ∈ Yz,i−1; this is condition
(C). For (P) consider ∑

y∈Yx,i

py =
∑

y∈Yz,i−1

py +
∑
y∈Gi

py

≥ ε

ε− δ
(µi−1 − tz,i−1) + λi−1 · ϕi−1

=
ε

ε− δ
(µi−1 − tx,i + νi−1 − µi−1)

=
ε

ε− δ
(µi − t− x, i),

where the first inequality follows by induction on z, Yz,i−1, and tz,i−1, the second follows by
construction, and the last equality holds because of νi−1 = µi by assumption.

Showing |X| ≤ α
β
|J |+ |I|. By construction, we have that

⋃
i∈IM Gi = X. As |Gi| ≤ ϕi

holds for all i ∈ IM , the claim follows if GM = ∅. The admission routine of the region
algorithm guarantees that FM = ∅. Hence, GM 6= ∅ implies that AM 6= ∅. However, (R), (P),
and (C) also hold for any job x ∈ AM which in turn implies that such a job x does not exist
by Corollary 1. This concludes the proof of the lemma.

17

Proof of Theorem 4. Clearly, X ∪ J , the union of jobs only scheduled by Opt and the jobs
the region algorithm admitted is a superset of the jobs that Opt completes on time. Lemma 6
shows that |X| ≤ ε

ε−δ
α
β |J | + |I|. With Lemma 5 we can bound the cardinality of I by 2|J |.

Hence, we conclude

Opt ≤
(

ε

ε− δ
α

β
+ 2

)
|J |.

Conclusion

We close the major questions regarding online throughput maximization with commitment
requirements on a single machine. It remains open whether randomization allows for im-
provements. Natural further questions concern generalizations such as weighted throughput
maximization and parallel machine models. While strong lower bounds exist for handling
weighted throughput with commitment [8], there remains a gap for the problem without
commitment. For sufficiently large slack parameter, there is an online algorithm for parallel
machines [2]. To the best of our knowledge, there is no algorithm for small slack.

References

[1] K. Agrawal, J. Li, K. Lu, and B. Moseley. Scheduling parallelizable jobs online to
maximize throughput. In Proceedings of the Latin American Theoretical Informatics
Symposium (LATIN), pages 755–776, 2018.

[2] Y. Azar, I. Kalp-Shaltiel, B. Lucier, I. Menache, J. Naor, and J. Yaniv. Truthful online
scheduling with commitments. In Proceedings of the ACM Symposium on Economics
and Computations (EC), pages 715–732, 2015.

[3] N. Bansal, H.-L. Chan, and K. Pruhs. Competitive algorithms for due date scheduling. In
Proceedings of the International Colloquium on Automata, Languages and Programming
(ICALP), pages 28–39, 2007.

[4] S. K. Baruah and J. R. Haritsa. Scheduling for overload in real-time systems. IEEE
Trans. Computers, 46(9):1034–1039, 1997.

[5] S. K. Baruah, J. R. Haritsa, and N. Sharma. On-line scheduling to maximize task
completions. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS), pages
228–236, 1994.

[6] S. K. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. E. Rosier, D. E. Shasha,
and F. Wang. On the competitiveness of on-line real-time task scheduling. Real-Time
Systems, 4(2):125–144, 1992.

[7] R. Canetti and S. Irani. Bounding the power of preemption in randomized scheduling.
SIAM J. Comput., 27(4):993–1015, 1998.

[8] L. Chen, F. Eberle, N. Megow, K. Schewior, and C. Stein. A general framework for han-
dling commitment in online throughput maximization. In Proceedings of the Conference
on Integer Programming and Combinatorial Optimization (IPCO), pages 141–154, 2019.

18

[9] B. DasGupta and M. A. Palis. Online real-time preemptive scheduling of jobs with
deadlines. In Proceedings of the International Conference on Approximation Algorithms
for Combinatorial Optimization Problems (APPROX), pages 96–107, 2000.

[10] A. D. Ferguson, P. Bod́ık, S. Kandula, E. Boutin, and R. Fonseca. Jockey: guaranteed job
latency in data parallel clusters. In Proceedings of the European Conference on Computer
Systems (EuroSys), pages 99–112, 2012.

[11] J. A. Garay, J. Naor, B. Yener, and P. Zhao. On-line admission control and packet
scheduling with interleaving. In Proceedings of the IEEE International Conference on
Computer Communications (INFOCOM), pages 94–103, 2002.

[12] M. H. Goldwasser. Patience is a virtue: The effect of slack on competitiveness for
admission control. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 396–405, 1999.

[13] S. Im and B. Moseley. General profit scheduling and the power of migration on hetero-
geneous machines. In Proceedings of the ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pages 165–173, 2016.

[14] B. Kalyanasundaram and K. Pruhs. Maximizing job completions online. J. Algorithms,
49(1):63–85, 2003.

[15] G. Koren and D. E. Shasha. MOCA: A multiprocessor on-line competitive algorithm for
real-time system scheduling. Theor. Comput. Sci., 128(1–2):75–97, 1994.

[16] G. Koren and D. E. Shasha. Dover: An optimal on-line scheduling algorithm for over-
loaded uniprocessor real-time systems. SIAM J. Comput., 24(2):318–339, 1995.

[17] R. Lipton. Online interval scheduling. In Proceedings of the ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 302–311, 1994.

[18] B. Lucier, I. Menache, J. Naor, and J. Yaniv. Efficient online scheduling for deadline-
sensitive jobs: extended abstract. In Proceedings of the ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), pages 305–314, 2013.

[19] K. Pruhs and C. Stein. How to schedule when you have to buy your energy. In Proceed-
ings of the International Conference on Approximation Algorithms for Combinatorial
Optimization Problems (APROX), pages 352–365, 2010.

[20] C. Schwiegelshohn and U. Schwiegelshohn. The power of migration for online slack
scheduling. In Proceedings of the European Symposium of Algorithms (ESA), volume 57,
pages 75:1–75:17, 2016.

[21] G. J. Woeginger. On-line scheduling of jobs with fixed start and end times. Theor.
Comput. Sci., 130(1):5–16, 1994.

19

	Introduction
	Previous results
	Our results and techniques

	An optimal algorithm for commitment
	The blocking algorithm
	Results on the blocking algorithm

	Completing all admitted jobs on time
	Admitting sufficiently many jobs
	Key lemma on the size of non-admitted jobs
	The blocking algorithm is O((-))-competitive

	Easier analysis of the region algorithm

