Shadi Attarha, Anna Förster
International Conference on Embedded Wireless Systems and Networks (2024)
doi: 10.48550/ARXIV.2405.01578
In the context of the Internet of Things (IoT), reliable and energy-efficient provision of IoT applications has become critical. Equipping IoT systems with tools that enable a flexible, well-performing, and automated way of monitoring and managing IoT edge devices is an essential prerequisite. In current IoT systems, low-power edge appliances have been utilized in a way that can not be controlled and re-configured in a timely manner. Hence, conducting a trade-off solution between manageability, performance and design requirements are demanded. This paper introduces a novel approach for fine-grained monitoring and managing individual micro-services within low-power edge devices, which improves system reliability and energy efficiency. The proposed method enables operational flexibility for IoT edge devices by leveraging a modularization technique. Following a review of existing solutions for remote-managed IoT services, a detailed description of the suggested approach is presented. Also, to explore the essential design principles that must be considered in this approach, the suggested architecture is elaborated in detail. Finally, the advantages of the proposed solution to deal with disruptions are demonstrated in the proof of concept-based experiments.
© 2024 The Authors, CC BY 4.0