Schleimpilze gibt es überall in der Natur. Diese auf den ersten Blick primitiv wirkenden Einzeller verfügen über eine hochentwickelte Strategie, um Nahrung und Umweltinformationen zu transportieren. Dabei nutzen sie ein verzweigtes Adernetzwerk. Wie sich solch ein Netzwerk bildet, haben Wissenschaftler der Universitäten Bremen und des Mechanobiology Institute Singapore in einem jetzt veröffentlichten Beitrag für die renommierte Fachzeitschrift „Physical Review Letters“ genau beschrieben. Am Schleimpilz Physarum polycephalum haben sie untersucht, wie sich einzelne getrennte Segmente des Schleimpilzkörpers zu einem großen zusammenhängenden Adernetzwerk zusammenfügen. Diesen Prozess nennt man Perkolation.
Professor Hans-Günther Döbereiner und sein Team aus dem Fachbereich Physik / Elektrotechnik der Uni Bremen sind überzeugt, dass ihre Forschungsergebnisse auch in der Krebstherapie Anwendung finden können. Der jetzt entschlüsselte Mechanismus der Netzwerkbildung des Schleimpilzes zum Transport seiner Zellflüssigkeit durch nahezu den gesamten Organismus ist auf die Blutversorgung von Tumoren übertragbar. Durch das Verständnis dieses Prozesses dürften Krebstherapien, die das Wachstum von Tumoren durch Einschränkung der Blutversorgung verhindern, an Effektivität gewinnen. Um zu ihren Forschungsergebnissen zu kommen, haben die Forscher aus Bremen und Singapur exakte mathematische Werkzeuge aus dem Bereich der Topologie verwendet. Dieser Teil der Mathematik beschäftigt sich mit den Zusammenhangseigenschaften geometrischer Körper bzw. allgemeiner mathematischer Strukturen. Es kommt nicht auf die Form sondern nur auf die verschiedenen möglichen Wege in einem Körper an. Diese lassen sich einfach durch ein Skelett, das aus Verbindungspfaden und Kreuzungen besteht, repräsentieren. „Unsere Erkenntnisse sind nicht nur für die Grundlagenforschung in der biologischen Physik und Systembiologie interessant, sondern allgemein für die Zell- und Entwicklungsbiologie. Eine medizinische Anwendung bei Stammzell- und Krebstherapien ist möglich“, zeigt sich der Bremer Biophysiker Döbereiner überzeugt.
Achtung Redaktionen: In der Uni-Pressestelle kann ein Foto angefordert werden, das ein Schleimpilznetzwerk zeigt.
Literaturhinweis: Adrian Fessel, Christina Oettmeier, Erik Bernitt, Nils C. Gauthier, and Hans-Günther Döbereiner, Physarum polycephalum Percolation as a Paradigm for Topological Phase Transitions in Transportation Networks, Phys. Rev. Lett. 109, 078103 (2012).
Weitere Informationen:
Universität Bremen
Fachbereich Physik / Elektrotechnik
Institut für Biophysik
Prof. Dr. Hans-Günther Döbereiner
E-Mail: hgd@biophysik.uni-bremen.de (im August nur per Mail erreichbar)